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ABSTRACT

In catalysis theory there is interest in the number of solutions of the

equation

v" + A(1 + - v)pe - y / v

with the boundary conditions

v'(O)I - O, v(1) 1

the parameters A, 0, y being all positive and p a non-negative integer.

The paper answers this question when y is large, which is the interesting

situation physically, and although the treatment is somewhat different in the

cases p - 0 and p * 0, the final answer is the same, that, given B,

there exist two positive functions AI1 W and A2 (y) such that the problem

has one solution if A < A (T) or A > A 2(), three solutions if

A t(y) < A < AX 2), and two solutions if A - A (Y) or A - A2 (y).

AMS (KOS) Subject Classifications: 34E99, 80A20, 80A30
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( SIGNIFICANCZ AND EXPLAAT ION

in the production of ceml, catalysts are often required to convert

gaseous reactants into useful products. Frequently the catalyst is in the

form of a porous pellet and the gas must diffuse into the interior of the

pellet so that the catalyst there is fully utilized. Depending upon the

relative rates of diffusion and reaction, temperature and concentration

gradients are set up across the pellet, and their determination is essential

for the calculation of the over-all rate of conversion. The modelling of

these processes within the pellet leads to a set of parabolic partial

differential equations, and a first step in the study of these is to determine

whether there exist steady-state solutions, and, if so, how many of these

there are.

The present paper works at a particular one-dimensional steady-state

equation which nonetheless seems to be typical of more general situations, and

it is shown rigorously that if the activation energy is sufficiently high,

then the number of solutions must be essentially either one or three

(depending upon the other parameters in the problem)._.

The responsibility for the wording and views expressed in this descriptive
goma ry lies with NRC, and not with the authors of this report.



TiHE NUK OF SOLUTIONS OF AN EQUATION FROM CATALYSIS

S. P. Hastings and J. B. McLeod

1. INTROODCTION

we are interested In the number of solutions of the equation

(0.1) v" + A0 + 0 - v)Pa

with the boundary conditions

(1.2) v'(O) - 0, V(1) - 1

This is the one-dimensional case of an equation of some importance in catalysis theory, the

parameters X, B, y being all positive, and p a non-negative integer. Readers

interested in the derivation of the equation and its physical Interpretation are referred

to the work by Aris 113, particularly section 2.5.4.

Relevant work on the analysis of this problem has been done by Dancer (2) and Parter

(31. Dancer's work is concerned with the came p - 1, although he mentions that It can be

extended to other values of p, and he shows that, with B fixed and y large, there are

at most three solutions of the problem except for a relatively small range of values of A

where he is unable to come to any conclusion. His argument, which depends upon regarding

(1.1) as a perturbation of the Gelfand equation

u" + mae 0

and using ideas from bifurcation theory, extends also to radially symmetric solutions in

two dimensions, and he shows that the problem is fundamentally different in higher

dimensions still, in that, for y large, there may be values of A giving large numbers

of solutions. His work in one and two dimensions is therefore a partial answer to the

conjecture that in these dimensions the problem has at most three solutions.

Parter is concerned with two dimensions and an equation which is a generalisation of

the case p - 0. His results delineate a region of the parameter space in which there

exist at least three solutions, and another in which there exists at most one.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by
Grant No. DAJA37-81-C-0220. Also supported by the U. K. Science and Engineering Research
Council.



Our results are more similar to those of Dancer, although obtained in quite a

different way. The restriction to one dimension arises because we intend to use the

autonomous nature of the equation in that case to reduce the problem to an integration, and

we can then establish that for (1.1) with p - 0 and the boundary data

(1.3) v'O) - 0, v(1) - 0 ,

the problem has either two solutions or none, this regardless of whether or not y is

large. (Given Y, there is one exceptional value of A for which the two solutions

become coincident.) The introduction of the boundary condition v(1) - I can be regarded,

at least for large y, as a perturbation, and by studying this perturbation we are able to

assert that (1.1)-(1.2) has, if y is sufficiently large, either one solution or three

(except for two exceptional values of X where there are two). Unlike the Dancer result,

there is no restriction on A. There would seen little doubt that the result remains true

whether y is large or not, but the analysis required for its proof seems too formidable.

Our approach is similar in spirit to that of Smoller and Wasserman [4), who studied

the number of solutions of another autonomous problem by reducing it to an integral. Their

nonlinearity was cubic, however, resulting in completely different analysis.

For p * 0, and boundary data (1.3), we establish again that there are either two

solutions or none, although, in contrast with the case p - 0, we have to assume y large

in order to assert this. This in turn leads to the same result as for p - 0 with the

original boundary conditions (1.2), namely that for y large there is either one solution

or three, except at two transitional values of A where there are two.

There is a variant of the problem, still of physical interest, in which the equation

is replaced by

v" + A10 + R v(I)(1 - - Vipe- ', v 
- 0

with the boundary conditions

v'O) = 0, v'(1) -P1 - v(1))

. V positive. This has been studied by Kapila and Matkowsky [5], and also by D. G.

Schaeffer (private communication), who show that the perturbation corresponding to changing

from (1.3) to (1.2) can produce two further solutions, so that there can be from one to

-2-



five. This problem is not studied in the present paper, although there would seem to be no

rease why the methods use here should not extend.

The arguments would certainly allow us to alter the nonlinearity e" Y/ v  to something

more general, but there does sem to be a large measure of agreement that a is the

correct nonlinearity, and so no attempt has been made to push the theorems in the direction

of gweralisatLon.

In 12 we prove the basic theorem for (.1) and (1.3) with p 0 0, and carry out the

perturbation to (1.2) in J3. Later sections deal with the case p > 0.

-3-



2. TMU CAS R - 0 WITH ZfIO SOUNDARY DATA

We are interested in the boundary-value problem

(2.1) v
= + XeO"/ v 

. 0,

(2.2) vI(0) - 0, v(1) - 0

Since X > 0, and the exponential is non-negative, we must have v" ( 0, and so v' O 0,

v(O) 0. Set

where a is so chosen that

Y(0) - 1

The equation for Y is

d2

d2Y ),-*y/a'

Set

a/2 x  ,xG = ¥ = dy/dx ,

and we have

yo - Xe_¥/QY . 0

Y(O) - 1, y'(O) - 0, Y(O
"
1/2) -0

Thus

Y12 _ _2A f Ye'¥/at dt,

K -1 -a-at 1/2

( )) I
Y

and integration with respect to Y over (0,1] gives

(2.3) X-1/2 (21)
"
1/2 f I eU'I/Qtdt)'

1 / 2 y
0 Y

or, with Y - IA,

-4-



(2.4) (2)12 U -1/2 -PI/tat-1/2dy
Y 0 Y

Now our object is to show that, given A, y, there exist at most two solutions a of

(2.3), or, equivalently, at most two solutions p of (2.4), for, through v(O) - a, two

solutions for a means two solutions for our original boundary-value problem. What we

shall actually prove, and it clearly implies the above, is

Theorem 1. For ij > 0, define f(P) kX

f(p)- P-1/2 I (f I eUP/tdt)- 1/2 dY

0 Y

Then f'(u, has precisely one zero, and that simple.

Proof. Let F(u) - eu . Then

1

2.5)d 1 2 i1/2r y F'( dt

(2.5) 1A " f 1A - dY .
dl 2 2 ~ To if s{Y)dt13/2

Y

Since F' - -F, and t 4 1 in the ranges of integration, we see that

(2.6) f ~kd - '(1)dt

Y Y

and so
df > 1

dli -2 2

Hence f'l() > 0 if U ) 1, and we need concern ourselves only with U < 1. Then

~-5-



j 2f1 / 1 d

3 2 1 {f 4 F'0 dI 01 V dv"(l/2

y t

(2. ) 1 t ~ - - . ( ) 1 2 
F-.2. -Fdtd

io t v t

111 F( )dtllf 
_F#))dtl3F()d

yt y 
y

y0 t

1 1 .L~1 + f F ( d t

I F 1P - 3 / 2 + T ( -

A_2 P1/ f(~dI 2 dY- 3

Whn 2 0, 4e ian used (25)too/a2

-6



2 ~f F'(P9dt
2d 2f 1 1/2 f Y t

i1

V ' 2 dY

dus0{ F(P94tj1/2

Y

1 1 1
+. 

3
/
2

j dY + 3 / 2  
dY

4 t Fq)dj/2 f 0 1j P(dt13/2

Y Y

U 3/2 + 3 3/2 .3/2)1 1 , t .d4 if F(Y)dt 3/2
Y

from (2.6). Hence, with u < 1, f'(p) - 0 implies f(p) > 0, and so f'(p) has at

most one zero, and that simple.

It remains to be proved that f' does possess one zero. However for small p we

have

f(P) - 2u-1/2 0 '1,) - . -3/2

and we have already seen that f'(p) > 0 for u > 1, so that certainly f(P) has a

zero.

The followinq result is an immediate corollary of Theorem 1.

Theorem 2. Por the boundary-value problem (2.1)-(2.2), there exists a positive number K

such that the problem has no solution if X/Y < K, Just one solution if A/A K, and two

solutions if A/Y > K.

-7-



3. THE CASE P = 0 WITH NON-ZERO BOUNDARY DATA

We now consider

(3.1) V" + e
- /v

= 0,

(3.2) v'(0) = 0, v(1) - I

With the same substitutions as in 12, this reduces to

Y" + A*e
-
/aY . 0

Y(0) - 1, YS(0) " 0, Y(Q
-
1/2) = a 1

, a > 1

which in turn leads to

0-1/2 . (2X)_1/2 fI ( e"Y/atdt)
- 1

/
2
dY

-1 Y
a

or, with y - a, to

(2)1/2 u -1/2 If e-/tdtl/ 2
dY

u/Y Y

lot us now define

fC(u) 1/2 f {f e'u/tdt1ll/
2
dy

Py Y

We are interested only in y large, and then f I() behaves like f(u) in Theorem I

except when u also is large. In particular, there is an C > 0 such that, if y is

sufficiently large, then on the interval 0 < u 4 cy, f l() first decreases to a minimum,

and then increases. On the other hand, while f(p) is defined for all U > 0, with

f(M) + - as P + -, f1 () makes sense only for U 4 Y. and f1 (Y) - 0. Our goal is to

show that (3.1)-(3.2) has at most three solutions, as stated in Theorem 4 below, and this

is a clear consequence of

Theorem 3. Por y sufficiently large, f;(U) has precisely two zeros in the range

0 < P ( Y, and those are simple. One occurs close to the zero of f'(U), end the other

with

p - y - 2 log x0 + O(y
- 

log Y),

where x. is the unique root exceeding 1 of

-. ..8-I Il . ... .. . .



(3.3) cosh- x - x/(x - 1)
/ 2

(That there is a unique root exceeding I of (3.3) follows by considering the difference

of the two sides, recalling that

d 1  
- )- 1

/2x- cosh-x - (
x 2  1)

Theorem 4. If Y is sufficiently large in the boundary-value problem (3.1)-(3.2), then

there exist two positive functions KI(Y), 12(Y) such that the problem has one solution if

I < K I (Y) or A > K2 (Y), three solutions if KI(Y) < X - K 2(y), and two solutions if

X - K I() or A - K1(Y).

Proof of Theorem 3.

Making the changes of variable

t Uz, Y UZ, z u
1 

, Z-U
1

we have

1/li 1/li

(3.4) f (Ui) f If el/dz - 1/ 2dz
lfY z

and
nd1/ j 1/u

I e-,/Zdz e-Vf /U ea -?/Zdz
z z

U dui u-)i -e
- e -P f .1 0jj-U d, e-1- fU- a -82

1 u 0 (+ }2 dj .

Now, by integration by parts,

U-U -e l-U U-U -8f " d - (I - ;
2 2 2 (; 3 dO

0 (0 + 1j) )A 0 (6 + V)

so that

( 3 .5 ) f • d e {1 + F (U, U ) - - _ - _

0 (e + U)2 2 U
2

where

-9-



U-1 -e U-u -e

f(tiU) -2 __ d6 / ------ de
0 (6 + iu) 0 (6 + * )

It is clear that

-1
(3.6) f(M,U) ( 2L,

but we can also assert that, for large is,

(3.7) LF (11,U) _ O(u
- 2 )

uniformly in U for P ( U ( Y. (We recall that we are only interested in large P,

since f W() behaves like f(M) when p is not large.) The truth of (3.7) is obvious so

far as those terms in the differentiation are concerned which arose from differentiation

under the integral signs. The terms arising from differentiating the limits of integration

are (omtting a factor 2)

U-U U-U -P U-U U-P - U-u -e
f- ds + e 3 do/If e 2 de12

U 0 (e + u)
2  0 (e + u) 3  0 ( +u)

2

u-U U- -0 U-U -

e 
3 

0. f Cu e - , - )de / {Jo ( - )2 de}
2

3@

U 30 (e + U) 3  0 (0 + U)2

If U - M ( 1, then the numerator does not exceed

-6 U- d -6 2

(U - p - OdO P -(U - ),
o

while the denominator is not less then

-U U-e' 2So dO}: 2 > KJA-4 (U - 10 2

for some constant K, since U - u 4 1. Thus (3.7) follows if U - I ( 1. If

U - p ) 1, the numerator does not exceed

-6 e- 1 -16
U-6(U - u)ep

-U f e-edO 4 e- P
0

while the denominator is not less than

1 -e -2

e 0 2 dO} 2 > A

0 (+ u) (Mu +

-10-



ence again (3.7) follows.

Prom (3.4), (3.5). (3.6),

1

1 Y ___ -1/2 -1

S(U2 
U  2 1 ) 

1/2

I
1 a -2

11 "

a f 2" {1 + o( ))a

1 (x
2  2 0)1/2

-1

where x = U
2  

and the O-term, thanks to (3.7), has the property that, if differentiated
I

with respect to M, it yields 01-21 ). Thus, with x - Pe t,

1 1

1 Ye /ie 2  
-2

(3.8) f I(P) e 212 1 + O(-1 ))dt

I (t
2  

1)

If U > y - log y, then U = ii+ O(log 0), and so

1 1
2 ye2-' /Me 'l  

2 1 -1/2 -

fI (y) - 2)1 2 (t(2  1 + o( - 1 log ))dt

P1 1 27

- 2 e 12cosh (Y 2 )1 + o1 1  log 0)1

our previous remarks about differentiating the O-term implying now that differentiation of

-2the last -term will yield (11 log ). TLhus

-11-



f;(U) - {1 - O(-)f'(P)
2!

2 i-YeO( _ i)-,/2(_ ivA- P 1 +Q(
+ 2 i

e 24 0 + 1)(1 + O(U - 1 
log 4))

ue 22

and so f;(u) 
= 
0 when

1 1

112 a

i.e. when

1 1 1

Ye2'/Us-  x x 0 + 0(P - I log 10

where x 0  in defined in the statement of the theorem. Thus
P - 2 - 2 log x 0  + O(Y

- 1 
log Y)•

We are now assured that there in a root of () with v ) y - log , and that it

necessarily satisfies (3.9). To prove that there is just one, and that one simple, we

evaluate Tp() with p satisfying (3.9) and show that f7(p) < 0. (we leave the

itraightforward calculat1ons to the reader.) we can also use (3.8) in similar manner to

prove that f;(U) 1 0 if CY 4 4 4 Y - log Y, and the proof of Theorem 3 is complete.

-12-
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4. TE CASE P 0 0 WITH ZERO BOUNDARY DATA

We are interested in the problem

V* + A( + 9 - v)Pe
Y/ v

with

v'(O) - 0 v(M) - 0

and we are interested in solutions for which v 4 1 + h. A in 12, we set

v - MY, x - a1 / 2X ,

where

Y(O) - 1, a - v(0) 4 1 + •

The equation for Y (Y' - dY/dE) is

Ya + A(I + A -0 G)Pe y / d Y - 0

Y(0) - 1, Y'(0) - 0, y( 1 2 ) 0

Thus

-1/2. (2- ) -1/2 f I(f (1 + 0 - at)lep'/*tdt)'1/2dY
0 Y

or, with y - upz, a 4 1 + , ¥/(1 + B),

(4.2) (21)1/2 -1/2 f ( f + (1 - yt/u)Pela/tdtl/ 2
dY

'V0 Y

Given X,y, we want to show that there exist at most two solutions a of (4.1), or at

most two solutions U of (4.2). We shall actually prove

Theorem 5. For p )p '/(l + 0) define g(p) k

I I

) " 1/2 f (f (I + B - Yt/U)Pe.l/tdt) 
1
'

2
dy

0 Y

Then for y sufficiently lare, 0 fixed, g'(p) has precisely one zero, and that

simple. Further, for this zero, p is close to y/(1 + 0), being given more precisely by

(4.9) or (4.10) below.

Proof. For convenience, write

(+ $)/Y, t - M/u, T - l/T,

-13-



and we have

With

uO +P, T a+

we have

Y rU I u M +0)211 a U + q)-2(K - P__d~_/d
11

3 - o1 + 6 - -O_-8-1/20 0

a -P f N + 0)'2ffa (U + 0 - X' p o-Orie1-1/2 d

i.e.

(4.3) GO 02 +C 0) 2t ( + 0 ' 
2 

.
0 0 (V + 0)

1-whore GOO) M(kY) 2P qW.

We shall show that G'Cu) (or equivalently g'()) can be zero only if u - K is

orall, and we first investigate the inner integral in (4.3). Par convenience, we write

and then the inner integral Is

(4.4) 1 (a + 9)P *-ad$ - e C T Pe- dT
o (V * )p

2  W + T - a)
p + 2

T deal first with a large, we note that if we differentiate G(u), we can

-2
differentiate e2  (which merely multiplies by 1/2), or we can differentiate (u + 0)

-

(which multiplies by a factor O(9 
1
))

. 
or we can differentiate the inner integral.

Differentiating the left-hand expression in (4.4) under the integral sign, we sea that we

-14-



collect a factor O(a 1 ) or O(1), and so when we differentiate G(p) vs similarly

collect such a factor, and so the leading term in the derivative is that arising from the
~1

differentiation of * and G'N) > 0.

To deal next with the case where a is moderate. We m that

(4.4) X OaPp- (p 2) if a (A
(4.5)

(4.4)@-aX -(p2) f o-T dT if 0 ) A

where A is a fixed number chosen so that

(a + o)Pe "
(a+a) < ape' for 0 ) A

and X means that each side is bounded by a positive constant times the other as + .

We remark also that if we differentiate (4.4) (with respect to p), then ve see that the

order relations obtained by formally differentiating (4.5) are valid. (This uses the

choice of A.) Thus

11 1 1

G(P) X 2- IA 2 +a f (P + 0)+2-1/2do e IPP j T )dT
- 1/ 2

1

0 a

1 -1 1
iK -p

X 2 2 (f peTdrfl/
2

a

In view of the remark just made about differentiation, we can differentiate this last order

relation, whence it is clear that GI(p) > 0.

We know therefore that a must be small for G'(p) - 0. To determine a more

precisely, we write

I

G(A) + fA + ( + a-21f +8  eodel/2d
0 C A 0 (M + 0)

- G1 (0) + G 2 ") + G3 (1)

say, where e is a small fixed positive number, and A a large one, both independent of

-15-



u Then

G1(10 - . 2  {1+O( -')}{4( )) II - ' 1(6 o_"'- aO ]F /2do
0 +

1 1 1 ,

(P+tl)t/2 e1A2' 2 
"p 

f/kw) " +1o

0

The integral in the last formula line converges, to Cp I say, as V - and a C 0, £

being fixed, provided that p > 1. If p - 1, it is asymptotic to

log C - log a •

It is easy to verify that formal differentiation of the asymptotic expression for

G 1  is justified, and that the major contribution to G; comes from the differentiation of

factors involving a. Thus, for p > 1,

G'(a) ( 1 1)1/2(l -1 a _-- "/ ((4 + f/ 1 -
1

0

x (1 + O(Pa )1 + O(e)){I + oWs))

I It I . 0') ( P + I )

-(p + 1)1/ 2 a u - a (/o ) -  (/i 2 x

x 0( + OW I ))(I + O(e)){1 + O(a/e))

and again, as u + - and a * 0, C fixed, the major term in G;(M) above is the

first. For p - 1,

1 1 1

G; (P) -(p+1) 1/2 2?2- , . -2 1/2 -21/2 .

Por G20 there exist constants X I(CA), K2(CA) such that

1 1 1 1ilji-p-1  -p71
i i KI(CIA) < G2 (W < X K 21C,A) I

1 1 1 1

XP 2 X (CIA) < GCIN) < a U 2 K 2(CIA)

-16-



Clearly. ', d mnats G1.

For G30 O A. ande o

IP

0315) .2 ( (+) 2 f ( + ) O d6)'/2do
A 0 (0 + O) , 2

" 1" ( )'2t(I" - 1") J.L o.L.... (, a0}-,ddo

A 0 a (M + 0)742

. (2 o+ ) 21(l I T% - ad " -/ do
A a a+o (- a + T)

1 -1&+QAa
(4.6) - Si g ( a)- 21 o (f , f f" TI - dt)" /2do

A 0 A 0 (v - a + t) 
'2

2-1

(4.7) . f 2 (.)(f" .PeT)"/da1.o( ) o())1.o(APe)

A 0

where the O-terms may depend on A,

1 -t 1

-(pl)/2 52 { 1 + O(5 1)){l + O(a)){1 + O(ApeA))

In differentiating G30 we must be careful, for formal differentiation of the leading term

does not give the correct result. If we denote the erpression in n.... } in (4.6) by

3(oja), then

1 -1

G3 f P + 0-3 (OM)- 1/2 d
G()- - 2e 2  f (ia +) (13(01,J11" 2do

A

(4.8)

- I ~~ a) 2 (( ) 3/21(a +~ a)P(+)- -
A 

- + 0) +2 ip215

In passing from (4.6) to (4.7), we saw that, for large m5, A.

J(0,a) - pip 
(p +2 1,

a-s 1

and so the first term on the right of (4.1 is O(e 15 , which cannot balance

°-17-



G;(3). The term involving (a + o)p  in again

1 -13 -11

OW V 2 (I +e 0)-(p+4)0 P*'dO) " o- da)
A

but the term involving aP  is asymptotically

(P') P' a (U + 0)'4 P C I I-/ 2 - a 1 / p a -1

For 01(m) -0 wmuthave a balance betwen G;(U) and G;(p), and so, fixing e, A
"1

as small as we please, and then letting u tA a 0. w, e have, for p ), 1,

1-1 - 1(1 1

I p+1 /2 (p )22-'a (+ *1) P I 1/2 d

0

- 1 (pl J* + d *-

so that

(4.9) a _ (P) 32 Ap + 1) 1(/2 + ) 1) i+s 1  
1 d#

0

In the case p l a ta we have

111-1

S (p + 1) 1 2  2~ 11s a I - 1 J4-32a
- (p +I) 2 ,2 ?p'a ('

so that

(4.10) a - 231/4 (1 + B) 1/2 Y 
1/2

Finally, to thow that the zero of G'(p) is unique and simple, we have to verify

that, in the relevant ranga for 1, GO(p) > 0. This is now a routine calculation, and we

leave it to the reader.
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S. THU CASH 9 * 0 WITH NO-ZERO BOUNDARY DATA

we now consider

v ( 0 - v)Pe -  - 0

with

v(0) - 0. v(1) - 1

and (for physical reasons) we are Interested in solutions for vhich v I 1 + B. With the

same substitutions am in 12, this reduces to

ye4. ( + 0 - aY)Pe
"Y/ G

y - 0,

Y(O) - 1, Y'(O) - 0, y( 
"
1/2) - a "1, a 4 1 + B

and since Y is clearly non-increasing, we must have a ) 1. Then

1 1

a-1/2 - (2X)11/2 fl (fI1 ( + - at)Pey/atdt)
"
l/

2 dY

-1 Y

or. vith y / au, y/(1 + B) ' u y,

(2X)1/2 _ U-1/2 B' (-/td-/2

With

K - (1 + B)/y, t - P/u, - /T

we have

1f/2p(11)1/2 _ fyT2 .2y -d
¥

-/d' "- r' T-2 j -2 (K . p -I..u- /2 ai

With u-I + , T - U + 0, we finally have

K 2 y 2 11u/2 u.2 o"2tfo (M + 6 - K--1p .e4de} 1./2do
K 0 0 (V + 9)

1p 2

Now define, for Y/(1 + 0) P u Y, '
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(U) (M . )-2 OU 6 - x' 1 p  -erde}-1/2da
0 0 (P + e) p2

Theorem 6. For Y sufficiently large, B fixed, K - (1 + 0)/y, G*'(p) has precisely

two zeros in the range y/(1 + 0) r. u y Y, both simple. One occurs near the zero of

G(u), the other asymptotically at p - V - 2 log x0 , where x0  is as in Theorem 3.

Proof. The proof of this need not be given in detail since it is in effect just a

repetition of parts of the proofs of Theorems 3 end 5. If u is such that y - U + - as

V + -, then G*(u) can be analysed as G(u) in Theorem 5. The result is that, in such

a range of U, G* (u) has precisely one zero, and that simple, with the value of

-t
a . U - K satisfying (4.9) or (4.10). If U is such that y - P - o(y), and this

clearly overlaps with the previous range of p, then we can treat G* as we did f1  in

Theorem 3. What the analysis there shows is that, to determine the asymptotic behaviour to

the required degree of accuracy, we treat j + e - K-1  as though it were P - K- 1, and

U + 8 and u + a as though they were V. Then

11I

G.(P) 2 5 U 2 a _ 11- K jY-1, ( .d- )-1/2do
0 0

11 1-2P- e l fV _ ( -o )-1/2do-e • (u -K K- (1-. ) d

0

i1 expF (C-U)1

211/-2e Ut-7 (P-K 1C)2 2 (X2 1/2 dx

1 1 _1 1 1

.2e iu2p- ( K) - pcosh-I (a V-/e).

-1
This is the same am the asymptotic expression for fI(p) except that u Is replaced by

1 1 1 1 1 1

U Cu - KU ) , and Ye /us by e /e The latter pair are asymptotically the

sow when V - U is bounded, which is the range we are interested in, and the former pair

play no part in determining the asymptotic position of u since when we differentiate
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them factors in f, or G. their derivatives do not contribute to the

leading terms in f or G*
'
. Thus the final answer for G* is asymptotically the same

as that for f,, as required.
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